4.7 Article

Reconnection of twisted flux tubes as a function of contact angle

期刊

ASTROPHYSICAL JOURNAL
卷 553, 期 2, 页码 905-921

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/320974

关键词

MHD; Sun : flares; Sun : magnetic fields

向作者/读者索取更多资源

The collision and reconnection of magnetic flux tubes in the solar corona has been proposed as a mechanism for solar flares and in some cases as a model for coronal mass ejections. We study this process by simulating the collision of pairs of twisted flux tubes with a massively parallel, collocation, viscoresistive, magnetohydrodynamic code using up to 256 x 256 x 256 Fourier modes. Our aim is to investigate the energy release and possible global topological changes that can occur in flux-tube reconnection. We have performed a number of simulations for different angles between the colliding flux tubes and for either co- or counterhelicity flux tubes. We find the following four classes of interaction : (1) bounce (no appreciable reconnection), (2) merge, (3) slingshot (the most efficient reconnection), and (4) tunnel (a double reconnection). We will describe these four classes of flux-tube reconnection and discuss in what range of parameter space each class occurs and the implications our results have for models of flares and coronal mass ejections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据