4.0 Article

Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102, and SAP-97 at postsynaptic, presynaptic, and nonsynaptic sites of adult and neonatal rat visual cortex

期刊

SYNAPSE
卷 40, 期 4, 页码 239-257

出版社

WILEY-LISS
DOI: 10.1002/syn.1047

关键词

membrane-associated guanylate kinases; postsynaptic density; receptor trafficking; glutamate receptors; postembedding gold labeling; synaptogenesis; synaptic strength

资金

  1. NEI NIH HHS [R01-EY08055] Funding Source: Medline
  2. NINDS NIH HHS [R01-NS36017, R01-NS41091-01A1] Funding Source: Medline

向作者/读者索取更多资源

Membrane-associated guanylate kinases (MAGUKs) assemble protein complexes at sites of cell-cell contact. At excitatory synapses in brain, MAGUKs localize to the postsynaptic density (PSD) and interact with N-methyl-D-aspartate (NMDA) glutamate receptors and downstream signaling proteins. However, NMDA receptors are not restricted to the PSDs, as electron microscopic immunocytochemical (EM-ICC) results indicate that NMDA receptors also occur at nonsynaptic portions of dendrites, perhaps functioning as reserves for rapid insertion into synaptic membranes in response to appropriate synaptic activity. NMDA receptors also occur in axons, at least in part to support glutamate-dependent enhancement of transmitter release. In this study, a systematic EM-ICC survey was performed to determine whether the distributions of four neuronal MAGUKs-PSD-95, PSD-93, SAP-102, and SAP-97-resemble that of NMDA receptors. Quantitative analysis revealed that the density of PSD-95 over thick PSDs of asymmetric axo-spinous synaptic junctions is 2-3-fold the level in the immediately adjacent cytoplasm of spines and terminals, while symmetric synapses show no association with PSD-95. Similarly, all four MAGUKs occur over PSDs of spines. However, we also detected MAGUK immunoreactivity, albeit more diffusely, along presynaptic membranes and in the cytoplasm of axons and dendritic shafts. In fact, the overall distribution of PSD-95 within the neuropil is equally prevalent along plasma membranes (including synaptic portions) as in the cytoplasm, away from plasma membranes. These results suggest that MAGUKs have dual roles: to maintain receptors at synapses and to regulate shuttling of receptors between nonsynaptic and synaptic sites. Synapse 40:239-257, 2001, (C) 2001 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据