4.7 Article

Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0921-5093(00)01958-4

关键词

eutectic solder; fatigue; intermetallic; microstructure; thermal cycling; solder joint

向作者/读者索取更多资源

Microstructure development of eutectic solder alloy (63Sn/37Pb) after thermal cycling aging and its impact on the shear and fatigue failure of the solder joint has been investigated. The solder microstructure changes with the reflow process and subsequent thermal cycling environments in solder joint reliability tests from - 40 to 125 degreesC. In service, solder joints are subjected to thermal cycling aging, corresponding to power on-off cycling of the electronic equipment or cyclic environmental temperature loading, leading to thermal fatigue failures. Thus, it is important to study the effect of the microstructure changes, mechanical strength and fatigue resistance of solder before and after thermal cycling aging. A new specimen design has been developed to closely resemble the actual electronic packaging assembly condition. The joint is made simply by soldering a solder ball between two FR-4 substrates with copper pads using the reflow process. The study shows that the solder microstructure coarsened and intermetallic compound layers grew after 500, 1000 and 2000 thermal cycles. The shear and fatigue strength of the solder joint decreased with increased exposure to thermal cycling aging effects. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据