4.6 Article

Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design

期刊

OPTICS EXPRESS
卷 8, 期 13, 页码 705-722

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.8.000705

关键词

-

类别

向作者/读者索取更多资源

We have designed high-efficiency finite-aperture diffractive optical elements (DOE's) with features on the order of or smaller than the wavelength of the incident illumination. The use of scalar diffraction theory is generally not considered valid for the design of DOE's with such features. However, we have found several cases in which the use of a scalar-based design is, in fact, quite accurate. We also present a modified scalar-based iterative design method that incorporates the angular spectrum approach to design diffractive optical elements that operate in the near-field and have sub-wavelength features. We call this design method the iterative angular spectrum approach (IASA). Upon comparison with a rigorous electromagnetic analysis technique, specifically, the finite difference time-domain method (FDTD), we find that our scalar-based design method is surprisingly valid for DOE's having sub-wavelength features. (C) 2001 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据