4.5 Review

Domain wall resistivity in epitaxial thin film microstructures

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 13, 期 25, 页码 R461-R488

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/13/25/202

关键词

-

向作者/读者索取更多资源

This article reviews our recent experimental studies of domain wall (DW) resistivity in epitaxial transition metal ferromagnetic thin film microstructures with stripe domains. The results are presented and analysed in the context of models of DW scattering and conventional magnetoresistance (MR) effects in ferromagnetic metals. Microstructures of progressively higher magnetic anisotropy and thus smaller DW widths have been studied, including; bcc Fe, hcp Co and L1(o) FePt. The magnetic domain structure of these materials have been investigated using magnetic force microscopy and micromagnetic simulations. In Fe and Co the dominant sources of low-field MR are ferromagnetic resistivity anisotropy, due to both anisotropic MR (AMR) and the Lorentz MR. In Fe, at low temperature, a novel negative DW contribution to the MR has been found. Hcp Co microstructures show a greater resistivity for current perpendicular to DWs than for current parallel to DWs, that is consistent with a small (positive) DW resistivity and a Hall effect mechanism. High anisotropy L1(o) FePt microstructures show strong evidence for an intrinsic DW contribution to the resistivity. Related studies and future directions are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据