4.8 Article

Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae

期刊

CURRENT BIOLOGY
卷 11, 期 12, 页码 991-995

出版社

CELL PRESS
DOI: 10.1016/S0960-9822(01)00271-8

关键词

-

向作者/读者索取更多资源

The repair of DNA double-strand breaks by recombination requires the presence of an undamaged copy that is used as a template during the repair process. Because cells acquire resistance to gamma irradiation during DNA replication [1] and because sister chromatids are the preferred partner for double-strand break repair in mitotic diploid yeast cells [2], it has long been suspected that cohesion between sister chromatids might be crucial for efficient repair. This hypothesis is consistent with the sensitivity to gamma irradiation of mutants defective in the cohesin complex [3] that holds sister chromatids together from DNA replication until the onset of anaphase (reviewed in [4-6]), It is also in accordance with the finding that surveillance mechanisms (checkpoints) that sense DNA damage arrest cell cycle progression in yeast by causing stabilization of the securin Pds1, thereby blocking sister chromatid separation [7-10]. The hypersensitivity to irradiation of cohesin mutants could, however, be due to a more direct Involvement of the cohesin complex in the process of DNA repair. We show here that passage through S phase in the presence of cohesin, and not cohesin per se, is essential for efficient double-strand break repair during G2 in yeast. Proteins needed to load cohesin onto chromosomes (Scc2) [11-13] and to generate cohesion during S phase (Ecol) [14, 15] are also shown to be required for repair. Our results confirm what has long been suspected but never proven, that cohesion between sister chromatids is essential for efficient double-strand break repair in mitotic cells. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据