4.8 Article

Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis

期刊

PLANT JOURNAL
卷 27, 期 2, 页码 101-113

出版社

WILEY
DOI: 10.1046/j.1365-313x.2001.01070.x

关键词

rice; Xanthomonas oryzae; SAR; NPR1; bZIP; liguleless

向作者/读者索取更多资源

The Arabidopsis NPR1/NIM1 gene is a key regulator of systemic acquired resistance (SAR). Overexpression of NPR1 leads to enhanced resistance in Arabidopsis. To investigate the role of NPR1 in monocots, we over-expressed the Arabidopsis NPR1 in rice and challenged the transgenic plants with Xanthomonas oryzae pv. oryzae (Xoo), the rice bacteria] blight pathogen. The transgenic plants displayed enhanced resistance to Xoo. RNA blot hybridization indicates that enhanced resistance requires expression of NPR1 mRNA above a threshold level in rice. To identify components mediating the resistance controlled by NPR1, we used NPR1 as bait in a yeast two-hybrid screen. We isolated four cDNA clones encoding rice NPR1 interactors (named rTGA2.1, rTGA2.2, rTGA2.3 and rLG2) belonging to the bZIP family. rTGA2.1, rTGA2.2 and rTGA2.3 share 75, 76 and 78% identity with Arabidopsis TGA2, respectively. In contrast, rLG2 shares highest identity (81%) to the maize liguleless (LG2) gene product, which is involved in establishing the leaf blade-sheath boundary. The interaction of NPR1 with the rice bZIP proteins in yeast was impaired by the npr1-1 and npr1-2 mutations, but not by the nim1-4 mutation. The NPR1-rTGA2.1 interaction was confirmed by an in vitro pull-down experiment. In gel mobility shift assays, rTGA2.1 binds to the rice RCH10 promoter and to a cis-element required sequence-specifically for salicylic acid responsiveness. This is the first demonstration that the Arabidopsis NPR1 gene can enhance disease resistance in a monocot plant. These results also suggest that monocot and dicot plants share a conserved signal transduction pathway controlling NPR1-mediated resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据