3.8 Article

Design, production and characterization of FLIN2 and FLIN4:: the engineering of intramolecular ldb1:LMO complexes

期刊

PROTEIN ENGINEERING
卷 14, 期 7, 页码 493-499

出版社

OXFORD UNIV PRESS
DOI: 10.1093/protein/14.7.493

关键词

fusion protein; ldb1; LMO transcription factors

向作者/读者索取更多资源

The nuclear LIM-only (LMO) transcription factors LMO2 and LMO4 play important roles in both normal and leukemic T-cell development. LIM domains are cysteine/ histidine-rich domains that contain two structural zinc ions and that function as protein-protein adaptors; members of the LMO family each contain two closely spaced LIM domains. These LMO proteins all bind with high affinity to the nuclear protein LIM domain binding protein 1 (ldb1). The LMO-ldb1 interaction is mediated through the N-terminal LIM domain (LIM1) of LMO proteins and a 38-residue region towards the C-terminus of ldb1 [ldb1(LID)]. Unfortunately, recombinant forms of LMO2 and LMO4 have limited solubility and stability, effectively preventing structural analysis. Therefore, we have designed and constructed a fusion protein in which Idb1(LID) and LIM1 of LMO2 can form an intramolecular complex. The engineered protein, FLIN2 (fusion of the LIM interacting domain of ldb1 and the N-terminal LIM domain of LMO2) has been expressed and purified in milligram quantities. FLIN2 is monomeric, contains significant levels of secondary structure and yields a sharp and well-dispersed one-dimensional H-1 NMR spectrum. The analogous LMO4 protein, FLIN4, has almost identical properties. These data suggest that we will be able to obtain high-resolution structural information about the LMO-ldb1 interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据