4.5 Article

Local fundus response to blue (LED and laser) and infrared (LED and laser) sources

期刊

EXPERIMENTAL EYE RESEARCH
卷 73, 期 1, 页码 137-147

出版社

ACADEMIC PRESS LTD
DOI: 10.1006/exer.2001.1020

关键词

light damage; laser; LED; retina; HRT; hyperfluorescent; pigment epithelium; IR; rhesus monkey; blue light

向作者/读者索取更多资源

Light damage research began during the early years of laser light exploration. There is a clear and significant literature that identifies an easily demonstrated retina-pigment epithelium pathology which is associated with short wavelength exposures below 520 nm. Recent interest has expanded because of the growing evidence for a blue light contribution to the retina aging process by way of a poorly understood chemical process(es) that involve circulation, oxidative reactions and the spectral absorption properties of the pigment epithelium. New powerful sources of relatively inexpensive blue energy have become available as a family of light emitting diodes. In this experiment, lye examined funduscopic, angiographic and scanning laser tomographic measures of the retinal-pigment epithelium response to LET) and laser spectral blue and infrared emissions closely matched in wavelengths and delivered under carefully matched circumstances. Ten retinas in normal young rhesus monkeys were locally exposed to various energy density values at 458 nm (Argon laser) ranging from 5 to 54 J cm(-2). Eight rhesus eyes were exposed to LED irradiation with a peak wavelength of 460 nm ranging from 9 to 62 J cm(-2) Similarly. a matched infrared (IR) laser and IR LED pair were used to expose an additional ten eyes for comparison of the long wavelengths. IR irradiance ranged from 21 to 306 J cm(-2). There was no response to IR exposure in any of the eyes. Blue light exposure results were measured from the color fundus photographs, scanning laser tomographs and early- and late-phase fluorescein angiogram responses at 2 and 30 days after the exposure. Results scores were accumulated for the four measures at the two time periods. The resulting lesion scores when plotted against the exposure in J cm(-2) showed no demonstrable effect at irradiance lower than 10 T cm(-2) and near 100% effectiveness for irradiance greater than 30 J cm(-2). The most sensitive and enduring indicator of change was the late fluorescein angiograms. Nonparametric statistical analysis of the scores from the two samples support the conclusion that there is no difference in the consequences of LED and laser light exposures under these matched conditions. (C) 2001 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据