4.6 Article

Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2010.01.107

关键词

Cellular mechanics; hMSCs; Differentiation; Micropipette aspiration; Cytoskeleton development

资金

  1. SERC [072 101 0021]
  2. Nanyang Technological University

向作者/读者索取更多资源

Human mesenchymal stem cells (hMSCs) have gained widespread attention in the field of tissue engineering but not much is known about the changes of mechanical proper-ties during the process of cell lineage commitment and the mechanisms of these behaviors. It is believed that exploring the inter-relations between stem cells mechanical properties and lineage commitment will shed light on the mechanobiology aspect of differentiation. hMSCs were cultured in adipogenic and osteogenic mediums and the elastic moduli were monitored using micropipette aspiration. It was found that hMSCs undergoing osteogenesis have an instantaneous Young's modulus of 890 +/- 219 Pa and an equilibrium Young's modulus of 224 +/- 40 Pa, each is about 2-fold higher than the control group. Interestingly, cells cultured in adipogenic medium exhibited a slight increase in the cellular modulus followed by a decrease relative to that of the control group. Gene expression study was employed to gain insights into this phenomenon. Concomitant up regulation of actin binding filamin A (FLNa) and gamma-Tubulin with the cellular elastic modulus indicated their important role in mechanical regulation during hMSCs differentiation. Statistical results showed that cell shape and cell area changed with cellular mechanical properties, which means that cell morphology has a close relation with cell elastic modulus in the initial stage of differentiation. Collectively, these results provide a quantitative description of hMSCs mechanical behavior during the process of differentiation as well as the possible accompanying mechanism at the biomolecular level. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据