4.4 Article

In situ stabilization of soil lead using phosphorus

期刊

JOURNAL OF ENVIRONMENTAL QUALITY
卷 30, 期 4, 页码 1214-1221

出版社

WILEY
DOI: 10.2134/jeq2001.3041214x

关键词

-

向作者/读者索取更多资源

In situ stabilization of Pb-contaminated soils can be accomplished by adding phosphorus. The standard remediation procedure of soil removal and replacement currently used in residential areas is costly and disruptive. This study was carried out to evaluate the influence of P and other soil amendments on five metal-contaminated soils and mine wastes. Seven treatments were used: unamended control; 2500 mg of P/kg as triple superphosphate (TSP), phosphate rock (PR), acetic acid followed by TSP, and phosphoric acid (PA); and 5000 mg of P/kg as TSP or PR. A significant reduction in bioavailable Pb, as determined by the physiologically based extraction test (PBET), compared with the control upon addition of P was observed in all materials tested. Increasing the amount of P added from 2500 to 5000 mg/kg also resulted in a significantly greater reduction in bioavailable Pb. Phosphate rock was equally or more effective than TSP or PA in reducing bioavailable Pb in four out of five soils tested. Preacidification produced significantly lower bioavailable Pb compared with the same amount of P from TSP or PR in only one material. Reductions in Pb bioavailability as measured by PBET were evident 3 d after treatment, and it may indicate that the reactions between soil Pb and P occurred in situ or during the PBET. No further reductions were noted over 365 d. X-ray diffraction data suggested the formation of pyromorphite-like minerals induced by P additions. This study suggests that P addition reduced bioavailable Pb by PBET and has potential for in situ remediation of Pb-contaminated soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据