4.3 Article Proceedings Paper

Equation of state of UO2

期刊

INTERNATIONAL JOURNAL OF THERMOPHYSICS
卷 22, 期 4, 页码 1253-1264

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/A:1010676628459

关键词

equation of state beat capacity; high temperatures; non-congruent evaporation; thermodynamic perturbation theory; vapor pressure; uranium dioxide

向作者/读者索取更多资源

An international project supported by INTAS (International Association for Promotion of Cooperation with Scientists from the New Independent States of the former Soviet Union) was started in 1994 with the intent of constructing an equation of suite (EOS) for liquid and gaseous UO2, which fully reproduces the comprehensive thermodynamic database for this compound. The new equation of state was devised for applications encompassing hypo- and hyper-stoichiometric compositions. A so-called chemical model was used for the theoretical description of liquid urania. This model is based on the thermodynamic perturbation theory (TPT) modified in order to account for the specific properties of the system investigated. It describes, in a unified formalism, a multicomponent mixture of chemically reactive, strongly interacting neutral and charged molecules and atoms. Comparisons of the predicted equilibrium vapor pressures with literature data provided an initial validation of the model up to temperatures of the order of 5500 K, A further, positive result is the fairly good agreement of the predicted beat capacity with experimental values, which extend up to 8000 K. A characteristic feature of non-congruentvaporization in UO2 +/-x is the production of a very high maximum vapor pressure (P-max similar to 1 GPa) as well as a substantial oxygen enrichment of the vapor phase over boiling UO2 ((O/U)(max)similar to7). The critical point of a truly non-congruent phase transition in UO2 Was also calculated. This point essentially differs from that defined for a gas-liquid phase transition in simple liquids; in particular, the equation ((o) over capP/(o) over capV)(c) similar to (P/V) not equal 0 applies here. The predicted critical parameters are: T-c approximate to 10120 K, P-c approximate to 965 MPa, rho (c) approximate to 2.61 g.cm(-3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据