4.6 Review

Binding of YC-1/BAY 41-2272 to soluble guanylate cyclase: A new perspective to the mechanism of activation

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2010.05.122

关键词

sGC; YC-1; BAY; GTP; Allostery; Activation

向作者/读者索取更多资源

Soluble guanylate cyclase (sGC), a heterodimeric heme protein, catalyses the conversion of GTP in to cyclic GMP, which acts as a second messenger in cellular signaling. Nitric oxide activates this enzyme several hundred folds over its basal level. Carbon monoxide, along with some activator molecules like YC-1 and BAY, also synergistically activate sGC. Mechanism of this synergistic activation is a matter of debate. Here we review the existing literature to identify the possible binding site for YC-1 and BAY on bovine lung sGC and its mechanism of activation. These two exogenous compounds bind sGC on a subunit inside a pocket and thus exert allosteric effect via subunit interface, which is relayed to the catalytic site. We used docking studies to further validate this hypothesis. We propose that the binding of YC-1/BAY inside the sensory domain of the alpha subunit modulates the interactions on the subunit interface resulting in rearrangements in the catalytic site into active conformation and this partly induces the cleavage of Fe-His bond. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据