3.8 Article Proceedings Paper

Field-emission properties of vertically aligned carbon-nanotube array dependent on gas exposures and growth conditions

出版社

AMER INST PHYSICS
DOI: 10.1116/1.1372915

关键词

-

向作者/读者索取更多资源

We grew vertically aligned carbon nanotubes (CNTs) using microwave plasma-enhanced (MPE) and thermal chemical-vapor deposition (CVD) and characterized their field emission properties. We observe that the flickering and instability in the field emission are due to the metal particles present on the field-emission array (FEA) surface. particularly from the MPECVD-grown samples. The existence of metal particles is an obstacle to obtaining reliable emission properties. The emission properties of the CNT-FEA are studied as a function of gas-exposure time with hydrogen, nitrogen, and oxygen gases. Gas exposures affected turn-on voltage, hysteresis. and the slope of Fowler-Nordheirn plots. We observe that the saturation of emission currents is attributed to gas adsorbates present on the surface of the FEA. Oxygen exposures induce more severe degradation on the field-emission properties than nitrogen, whereas emission properties are improved by hydrogen gas exposures that clean the surface of emitters. In addition, hydrogenation of carbon nanotubes has technical importance for activation of the CNT-FEA. (C) 2001 American Vacuum Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据