4.7 Article

Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 49, 期 7, 页码 3296-3303

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf001432w

关键词

atrazine; trifluralin; coumaphos; biosurfactants; surfactants; biodegradation; Streptomyces; sorption; desorption; solubilization

向作者/读者索取更多资源

The effect of surfactants on the biodegradation of trifluralin and atrazine (by Streptomyces PS1/5) and coumaphos (by degrading consortia from a contaminated cattle dip) in liquid cultures and soil slurries was tested at different concentrations of a rhamnolipid mixture (Rh-mix) and Triton X-100 (TX-100). The extent of trifluralin biodegradation in liquid culture was improved at high concentrations of both surfactants. The extent of atrazine degradation dropped in the presence of either surfactant. Coumaphos biodegradation improved slightly at Rh-mix dosages > 3000 muM; however, it was readily inhibited by TX-100 at amounts above the critical micelle concentration. In soil slurries, the extent of both trifluralin and atrazine biodegradation was higher in Hagerstown A (HTA) soil than in Hagerstown B (HTB) soil and was not significantly affected by the presence of either surfactant. The onset of trifluralin biodegradation was retarded at higher concentrations of surfactants. In the absence of surfactant, up to 98% of coumaphos in both soil slurries was transformed. At increasing dosages of Rh-mix, the onset of coumaphos biodegradation was retarded, but the removal efficiency of the pesticide increased. Rh-mix and TX-100 depletion was observed during Streptomyces PS1/5 growth in liquid cultures. Rh-mix concentration also decreased during coumaphos biodegradation, whereas TX-100 concentration was not affected. These results suggest that surfactants, added for the purpose of increasing the apparent water solubility of hydrophobic organic compounds, may have unintended effects on both the rate and extent of biodegradation of the target compounds if the surfactants can also be degraded by the microorganisms in the system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据