4.6 Article

Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cells

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2009.06.106

关键词

Dental pulp stem cells; Hydrostatic pressure; Pulp calcification; Tooth; Cellular stress

资金

  1. University of Pennsylvania Research Foundation [5-R03-AG-026047-02]
  2. National Institute of Health, Bethesda [1K08CA120875-01]

向作者/读者索取更多资源

The masticatory apparatus absorbs high occlusal forces, but uncontrolled parafunctional or orthodontic forces damage periodontal ligament (PDL), cause pulpal calcification, pulp necrosis and tooth loss. Morphology and functional differentiation of connective tissue cells can be controlled by mechanical stimuli but effects of uncontrolled forces on intra-pulpal homeostasis and ability of dental pulp stem cells (DPSCs) to withstand direct external forces are unclear. Using dynamic hydrostatic pressure (HSP), we tested the hypothesis that direct HSP disrupts DPSC survival and odontogenic differentiation. DPSCs from four teenage patients were subjected to HSP followed by assessment of cell adhesion, survival and recovery capacity based on odontogenic differentiation, mineralization and responsiveness to bone morphogenetic protein-2 (BMP-2). HSP down-regulated DPSC adhesion and survival but promoted differentiation by increasing mineralization, in vivo hard tissue regeneration and BMP-2 responsiveness despite reduced cell numbers. HSP-treated DPSCs displayed enhanced odontogenic differentiation, an indication of favorable recovery from HSP-induced cellular stress. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据