4.6 Article

An Ankyrin-G N-terminal Gate and Protein Kinase CK2 Dually Regulate Binding of Voltage-gated Sodium and KCNQ2/3 Potassium Channels

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 290, 期 27, 页码 16619-16632

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M115.638932

关键词

-

资金

  1. National Institutes of Health [RO1 NS049119, T32NS043124]

向作者/读者索取更多资源

In many mammalian neurons, fidelity and robustness of action potential generation and conduction depends on the colocalization of voltage-gated sodium (Na-v) and KCNQ2/3 potassium channel conductance at the distal axon initial segment (AIS) and nodes of Ranvier in a ratio of similar to 40 to 1. Analogous anchor peptides within intracellular domains of vertebrate KCNQ2, KCNQ3, and Na-v channel alpha-subunits bind Ankyrin-G (AnkG), thereby mediating concentration of those channels at AISs and nodes of Ranvier. Here, we show that the channel anchors bind at overlapping but distinct sites near the AnkG N terminus. In pulldown assays, the rank order of AnkG binding strength is Na(v)1.2 >> KCNQ3 > KCNQ2. Phosphorylation of KCNQ2 and KCNQ3 anchor domains by protein kinase CK2 (CK2) augments binding, as previously shown for Na(v)1.2. An AnkG fragment comprising ankyrin repeats 1 through 7 (R1-7) binds phosphorylated Na-v or KCNQ anchors robustly. However, mutational analysis of R1-7 reveals differences in binding mechanisms. A smaller fragment, R1-6, exhibits much-diminished KCNQ3 binding but binds Na(v)1.2 well. Two lysine residues at the tip of repeat 2-3 beta-hairpin (residues 105-106) are critical for Na(v)1.2 but not KCNQ3 channel binding. Another dibasic motif (residues Arg-47, Arg-50) in the repeat 1 front alpha-helix is crucial for KCNQ2/3 but not Na(v)1.2 binding. AnkG's alternatively spliced N terminus selectively gates access to those sites, blocking KCNQ but not Na-v channel binding. These findings suggest that the 40:1 Na-v:KCNQ channel conductance ratio at the distal AIS and nodes arises from the relative strength of binding to AnkG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据