4.6 Review

Molecular physiology of oxygen-sensitive potassium channels

期刊

EUROPEAN RESPIRATORY JOURNAL
卷 18, 期 1, 页码 221-227

出版社

EUROPEAN RESPIRATORY SOC JOURNALS LTD
DOI: 10.1183/09031936.01.00204001

关键词

acute hypoxia; neutroepithelial body cells; oxygen sensors; potassium channel

向作者/读者索取更多资源

Physiological adaptation to acute hypoxia involves oxygen-sensing by a variety of specialized cells including carotid body type I cells, pulmonary neuroepithelial body cells, pulmonary artery myocytes and foetal adrenomedullary chromaffin cells. Hypoxia induces depolarization by closing a specific set of potassium channels and triggers cellular responses. Molecular biology strategies have recently allowed the identification of the K+ channel subunits expressed in these specialized cells. Several voltage-gated K+ channel subunits comprising six transmembrane segments and a single pore domain (Kv1.2, Kv1.5, Kv2.1, Kv3.1, Kv3.3, Kv4.2 and Kv9.3) are reversibly blocked by hypoxia when expressed in heterologous expression systems. Additionally, the background K+ channel subunit TASK-1, which comprises four transmembrane segments and two pore domains, is also involved in both oxygen- and acid-sensing in peripheral chemoreceptors. Progress is currently being made to identify the oxygen sensors. Regulatory beta subunits may play an important role in the modulation of Kv channel subunits by oxygen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据