4.8 Review

The physics of manganites: Structure and transport

期刊

REVIEWS OF MODERN PHYSICS
卷 73, 期 3, 页码 583-628

出版社

AMER PHYSICAL SOC
DOI: 10.1103/RevModPhys.73.583

关键词

-

向作者/读者索取更多资源

The fundamental physical properties of doped LaMnO3, generically termed manganites, and much of the underlying physics, were known more than 40 years ago. This article first reviews progress made at that time, the concept of double exchange in particular, and points out the missing elements that have led to a massive resurgence of interest in these and related materials. More recent research is then described, treating first the ground states that emerge as divalent atoms are substituted for trivalent La. A wide range of ground states appear, including ferromagnetic metals, orbital- and charge-ordered antiferromagnets, and more complex stripe and spin-glass states. Because of the interest in so-called colossal magnetoresistance that occurs in the ferromagnetic/metallic composition range, a section is devoted to reviewing the atypical properties of that phase. Next the high-temperature phase is examined, in particular, evidence for the formation of self-trapped small polarons and the importance of Jahn-Teller coupling ia this process. The transitions between the high-temperature polaronic phase and the ferromagnetic and charge-ordered states are treated in a fourth section. In each section, the authors stress the competition among charge, spin, and lattice coupling and review the current state of theoretical understanding. They conclude with some comments on the impact that research on these materials has on our understanding of doped oxides and other strongly correlated electronic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据