4.5 Article

Online model selection based on the variational bayes

期刊

NEURAL COMPUTATION
卷 13, 期 7, 页码 1649-1681

出版社

MIT PRESS
DOI: 10.1162/089976601750265045

关键词

-

向作者/读者索取更多资源

The Bayesian framework provides a principled way of model selection. This framework estimates a probability distribution over an ensemble of models, and the prediction is done by averaging over the ensemble of models. Accordingly, the uncertainty of the models is taken into account, and complex models with more degrees of freedom are penalized. However, integration over model parameters is often intractable, and some approximation scheme is needed. Recently, a powerful approximation scheme, called the variational bayes (VB) method, has been proposed. This approach defines the free energy for a trial probability distribution, which approximates a joint posterior probability distribution over model parameters and hidden variables. The exact maximization of the free energy gives the true posterior distribution. The VB method uses factorized trial distributions. The integration over model parameters can be done analytically, and an iterative expectation-maximization-like algorithm, whose convergence is guaranteed, is derived. In this article, we derive an online version of the VB algorithm and prove its convergence by showing that it is a stochastic approximation for finding the maximum of the free energy. By combining sequential model selection procedures, the online VB method provides a fully online learning method with a model selection mechanism. In preliminary experiments using synthetic data, the online VB method was able to adapt the model structure to dynamic environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据