4.6 Article

Defect ordering in aliovalently doped cubic zirconia from first principles

期刊

PHYSICAL REVIEW B
卷 64, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.64.014106

关键词

-

向作者/读者索取更多资源

Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species; For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound delta -Zr3Y4O12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along (111) directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y2O3- and Sc2O3-stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In2O3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据