3.8 Review

Mitogen-activated protein kinase signal transduction in skeletal muscle: effects of exercise and muscle contraction

期刊

ACTA PHYSIOLOGICA SCANDINAVICA
卷 172, 期 3, 页码 227-238

出版社

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1365-201x.2001.00855.x

关键词

exercise; extracellular signal-regulated kinase; gene expression; mitogen-activated protein kinase; muscle contraction; stress-activated protein kinase

向作者/读者索取更多资源

Exercise has numerous growth and metabolic effects in skeletal muscle, including changes in glycogen metabolism, glucose and amino acid uptake, protein synthesis and gene transcription. However, the mechanism(s) by which exercise regulates intracellular signal transduction to the transcriptional machinery in the nucleus, thus modulating gene expression, is largely unknown. This review will provide insight on potential intracellular signalling mechanisms by which muscle contraction/exercise leads to changes in gene expression. Mitogen-activated protein kinase (MAPK) cascades are associated with increased transcriptional activity. The MAPK family members can be separated into distinct parallel pathways including the extracellular signal-regulated kinase (ERK) 1/2, the stress-activated protein kinase cascades (SAPK1/JNK and SAPK2/p38) and the extracellular signal-regulated kinase 5 (ERK5). Acute exercise elicits signal transduction via MAPK cascades in direct response to muscle contraction. Thus, MAPK pathways appear to be potential physiological mechanisms involved in the exercise-induced regulation of gene expression in skeletal muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据