4.5 Article

Distribution and depression of the GABAB receptor in the spinal dorsal horn of adult rat

期刊

BRAIN RESEARCH BULLETIN
卷 55, 期 4, 页码 479-485

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0361-9230(01)00546-9

关键词

GABA(B); receptor; baclofen; synaptic transmission; spinal cord; slice; rat

向作者/读者索取更多资源

gamma -Aminobutyric acid (GABA) is a principal inhibitory neurotransmitter in vertebrate nervous system. The metabotropic receptor for GABA, GABA(B) receptor, is characterized as a G protein-coupled receptor subtype. In the present study, GABA(B) receptor-like immunoreactivity (GABA(B)R-LI) in the rat spinal cord and dorsal root ganglion (DRG), as well as GABA(B), receptor-mediated depression in the spinal dorsal horn were examined by using immunohistochemistry and whole-cell voltage-clamp recording technique, respectively. Under light microscope, GABA(B)R-LI was densely found in laminae I and II of the dorsal horn. DRG cells of various diameters also showed GABA(B)R-LI. Electron microscopy further revealed that GABA(B)R-LI was also localized in terminals of myelinated, unmyelinated fibers as well as the somatodendritic sites of dorsal horn neurons. Bath application of a GABA(B) receptor agonist, baclofen (10 muM, 30 s), induced a slow outward (inhibitory) current in dorsal horn neurons. This slow current was depressed when the postsynaptic G protein-coupled receptor was inhibited, indicating the postsynaptic action of baclofen. Under the condition of postsynaptic GABA(B) receptor being inhibited, baclofen (10 muM, 60 s) depressed large (A beta) and fine (C, A delta) afferent fiber-evoked monosynaptic excitatory postsynaptic currents, indicating presynaptic inhibition of GABA(B), receptor on elicited neurotransmitter release. Taken together, the results suggest that baclofen-sensitive GABA(B) receptor is expressed pre- and postsynaptically on primary afferent fibers and neurons in the spinal dorsal horn; activation of GABA(B) receptor in the dorsal horn postsynaptically hyperpolarizes dorsal horn neurons and presynaptically inhibits primary afferents. (C) 2001 Elsevier Science Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据