4.6 Article

Distinct cardiogenic preferences of two human embryonic stem cell (hESC) lines are imprinted in their proteomes in the pluripotent state

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2008.05.076

关键词

human embryonic stem cells; cardiac differentiation; proteomic; electrophysiology; differential in-gel electrophoresis

资金

  1. NHLBI NIH HHS [R01 HL072857, F32 HL078330, R01 HL072857-04, R01 HL72857] Funding Source: Medline

向作者/读者索取更多资源

Although both the H1 and HES2 human embryonic stem cell lines (NIH codes: WA01 and ES02, respectively) are capable of forming all three germ layers and their derivatives, various lines of evidence including the need to use different protocols to induce cardiac differentiation hint that they have distinct preferences to become chamber-specific heart cells. However, a direct systematic comparison has not been reported. Here we electrophysiologically demonstrated that the distributions of ventricular-, atrial- and pacemaker-like derivatives were indeed different (ratios = 39:61:0 and 64:33:3 for H1 and HES2, respectively). Based on these results, we hypothesized the differences in their cardiogenic potentials are imprinted in the proteomes of undifferentiated H1 and HES2. Using multiplexing, high-resolution 2-D Differential In Gel Electrophoresis (DIGE) to minimize gel-to-gel variations that are common in conventional 2-D gels, a total of 2000 individual protein spots were separated. Of which, 55 were >2-fold differentially expressed in H1 and HES2 (p<0.05) and identified by mass spectrometery. Bioinformatic analysis of these protein differences further revealed candidate pathways that contribute to the H1 and HES2 phenotypes. We conclude that H1 and HES2 have predetermined preferences to become ventricular, atrial, and pacemaker cells due to discrete differences in their proteomes. These results improve our basic understanding of hESCs and may lead to mechanism-based methods for their directed cardiac differentiation into chamber-specific cardiomyocytes. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据