4.7 Article Proceedings Paper

Oxidative stress in zebrafish cells: potential utility of transgenic zebrafish as a deployable sentinel for site hazard ranking

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 274, 期 1-3, 页码 183-196

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0048-9697(01)00742-2

关键词

zebrafish; oxidative stress; electrophile response element; sentinel animal

资金

  1. NIEHS NIH HHS [P30 ES06096, P30 ES04184, R01 ES07058] Funding Source: Medline

向作者/读者索取更多资源

In order to quickly assess potential environmental hazards of forwardly deployed military bases, we have focussed our efforts on biochemical and molecular changes in vertebrate cells following exposure to aqueous soil extracts. To this end, we are designing a series of deployable transgenic fish. Fish exhibit many of the same general defenses against toxic chemicals as do mammals, including enzyme induction, and the generation of oxidative stress. In response to many foreign compounds that generate oxidative stress, the transcription of certain protective genes is induced via specific DNA motifs called electrophile response elements (EPREs). We have made a plasmid construct containing a single murine EPRE fused to a minimal promoter and the cDNA encoding firefly luciferase (EPRE LUG). In this paper, we have shown that the treatment of zebrafish cell line ZEM2S with a variety of chemicals known to induce EPRE-dependent transcription in cultured mammalian cells, results in dose-dependent induction of the transiently-transfected EPRE-LUC reporter construct. Compounds tested include aromatic hydrocarbons, heavy metals, and organophosphates. We observed similar dose-dependent responses when we treated ZEM2S and human cells in vitro with identical aqueous extracts of soil from hazardous waste sites. This suggests that the mechanism by which these compounds activate transcription is well conserved between mammals and zebrafish, and that transgenic zebrafish lines containing EPRE-driven reporter constructs might be useful as sentinels for the early detection of oxidative stress-inducing chemicals. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据