4.6 Article

Metal-insulator-vacuum type electron emission from N-containing chemical vapor deposited diamond

期刊

APPLIED PHYSICS LETTERS
卷 79, 期 2, 页码 275-277

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1385341

关键词

-

向作者/读者索取更多资源

This letter presents a clear explanation of the electron emission mechanism of the high-resistivity N-doped diamond cathode. Due to the very low barrier to emission of electrons from the N-doped diamond conduction band into vacuum, electrons in the conduction band of diamond can establish an appreciable leakage current at very low anode voltage. When such a current starts to flow, there is a field which is developed across the diamond bulk. This field is observed as an increase in the electric field at the back contact, causing the injected tunneling current increases exponentially. This process leads to the low threshold emission from the high resistivity N-doped diamond cathode. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据