4.6 Article

First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory

期刊

PHYSICAL REVIEW B
卷 64, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.64.045208

关键词

-

向作者/读者索取更多资源

A number of diverse bulk properties of the zinc-blende and wurtzite III-V nitrides AlN, GaN, and InN, are predicted from first principles within density-functional theory using the plane-wave ultrasoft pseudopotential method, within both the local density approximation (LDA) and generalized gradient approximation (GGA) to the exchange-correlation functional. Besides structure and cohesion. we study formation enthalpies (a key ingredient in predicting defect solubilities and surface stability), spontaneous polarizations and piezoelectric constants (central parameters for nanostructure modeling), and elastic constants. Our study bears out the relative merits of the two density-functional approaches in describing diverse properties of the III-V nitrides (and of the parent species N-2, Al, Ga, and In). None of the two schemes gives entirely successful results. However, the GGA associated with the multiprojector ultrasoft pseudopotential method slightly outperforms the LDA overall as to lattice parameters, cohesive energies. and formation enthalpies of wurtzite nitrides. This is relevant to the study of properties such as polarization, vibrational frequencies, elastic constants, nonstochiometric substitution, and absorption. A major exception is the formation enthalpy of InN, which is underestimated by the GGA (similar to0 vs -0.2 eV).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据