4.6 Article

Induction of peroxiredoxin gene expression by oxygen in lungs of newborn primates

出版社

AMER THORACIC SOC
DOI: 10.1165/ajrcmb.25.2.4314

关键词

-

资金

  1. NHLBI NIH HHS [HL 57144, HL 52732, HL 53636, HL 56263] Funding Source: Medline

向作者/读者索取更多资源

Peroxiredoxin (Prx) is an important antioxidant defense enzyme that reduces hydrogen peroxide to molecular oxygen by using reducing equivalents from thioredoxin. We report that lung Prx I messenger RNA (mRNA) is specifically upregulated by oxygen. Throughout the third trimester, mRNA for Prx I was expressed constitutively at low levels in fetal baboon lung. However, after premature birth (125 or 140 d gestation), lung Prx I mRNA increased rapidly with the onset of oxygen exposure. Premature animals (140 d) breathing 100% O-2 developed chronic lung disease within 7 to 14 d. These animals had greater lung Prx I mRNA after 1, 6, or 10 d of life than did fetal controls. In 140-d animals given lesser O-2 concentrations (as needed) that did not develop chronic lung disease, lung Prx I mRNA also was increased on Days I and 6, but not Day 10. In fetal distal lung explant culture, Prx I mRNA was elevated in 95% O-2, relative to 1% oxygen, and remained elevated at 24 h. Prx protein activity increased in 140-d premature baboons exposed to as-needed oxygen. By contrast, there was a decrease in Prx activity in 140-d premature baboons exposed to 100% oxygen. In the lung explants from prematures (140 d), there was no significant increase in Prx activity in response to 24 h exposure to hyperoxia, whereas exposure of explants to 48 h hyperoxia caused a nonsignificant decrease in Prx activity. Treatment of lung explants with actinomycin D inhibited Prx mRNA increases in 95% oxygen, indicating transcriptional regulation. In cellular signaling studies we demonstrated that protein kinase (PK) C activity increased when A549 cells were exposed to 95% oxygen, compared with 21% oxygen exposure. In lung explant cultures, specific PKC inhibitors calphostin C or GF109203X inhibited the increase in Prx I mRNA with 95% oxygen exposure, indicating PKC-mediated signaling. The acute increase in gene expression of Prx I in response to oxygen suggests an important role for this protein during the transition from relatively anaerobic fetal life to oxygen-breathing at birth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据