4.5 Article

Permeability and the mechanism of transport of boric acid across the plasma membrane of Xenopus laevis oocytes

期刊

BIOLOGICAL TRACE ELEMENT RESEARCH
卷 81, 期 2, 页码 127-139

出版社

HUMANA PRESS INC
DOI: 10.1385/BTER:81:2:127

关键词

boric acid; permeability; uptake; boron; liposomes; oocytes

向作者/读者索取更多资源

Boron is an essential element for vascular plants and for diatoms, cyanobacteria, and a number of species of marine algal flagellates. Boron was recently established as an essential micronutrient for frogs (Xenopus laevis) and preliminary evidence suggests that it may be essential for all animals. The main form of B, which is available in the natural environment, is in the form of undissociated boric acid. The permeability coefficient and the mechanism of transport of boric acid, however, have not been experimentally determined across any animal membrane or cell. In the experiments described here, the permeability coefficient of boric acid in Xenopus oocytes was 1.5 X 10(-6) cm/s, which is very close with the permeability across liposomes made with phosphatidylcholine and cholesterol (the major lipids in the oocyte membrane). Moreover, we investigated the mechanism of boric acid movement across the membrane of Xenopus oocytes and we compared it with the transport across artificial liposomes. The transport of boric acid across Xenopus oocytes was not affected by inhibitors such as HgCl2, phloretin, or 4,4-diisothiocyanatostilbene-2,2 ' -D-sulfonic acid (DIDS). The kinetics of B uptake was linear with concentration changes, and the permeability remained the same at different external boric acid concentrations. These results suggest that B transport occurs via simple passive diffusion through the lipid bilayer in Xenopus oocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据