4.8 Article

The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions

期刊

WATER RESEARCH
卷 35, 期 12, 页码 2873-2880

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0043-1354(00)00580-7

关键词

photodegradation; 2-chlorophenol; coupled semiconductor system; apparent first-order rate constant

向作者/读者索取更多资源

The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol (2-CP) in titanium dioxide suspensions was investigated to evaluate the feasibility of mixed semiconductors on the photodegradation of chlorinated organics in aqueous solution. Apparent first-order rate constants (k(obs)) and initial rate constants were used to evaluate the degradation efficiency of 2-CP. Higher degradation efficiency of 2-CP was observed at higher pH values. The apparent pseudo-first order rate constant was 0.036 min(-1) at pH 12.5 in TiO2/UV system, while a 2- to 9-fold decrease in k(obs) was observed over the pH range of 2.59.5. The addition of phosphate buffer solutions at different pH values have different effects on the degradation of 2-CP. H2PO4- has little effect on the photodegradation of 2-CP, while HPO42- could inhibit the photodegradation efficiency of 2-CP. Chlorocatechol, hydroquinone, benzoquinone and phenol were identified as the predominant aromatic intermediates for the photocatalytic degradation of 2-CP. Moreover, less aromatic intermediates at higher pH were observed. Direct oxidation contributed significantly to the photodegradation of 2-CP. An addition of a semiconductor decreased the initial and apparent first-order rate constants of 2-CP. The cutoff of wavelength of 320 nm could diminish the contribution of direct photolysis of 2-CP. The combination of cadmium sulfide and titanium dioxide can lead to an enhanced rate of disappearance of 2-CP compared to those in single semiconductor system. A 1.2 to 2.5-fold increase in rate constant in coupled semiconductor system relative to the single semiconductor system was obtained. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据