4.0 Article

Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells

期刊

TISSUE ENGINEERING
卷 7, 期 4, 页码 363-371

出版社

MARY ANN LIEBERT INC PUBL
DOI: 10.1089/10763270152436427

关键词

-

向作者/读者索取更多资源

This study tested the tissue engineering hypothesis that construction of an osteochondral composite graft could be accomplished using multipotent progenitor cells and phenotype-specific biomaterials. Rat bone marrow-derived mesenchymal stem cells (MSCs) were culture-expanded and separately stimulated with transforming growth factor-beta1 (TGF-beta1) for chondrogenic differentiation or with an osteogenic supplement (OS). MSCs exposed to TGF-beta1 were loaded into a sponge composed of a hyaluronan derivative (HYAF(R)-11) for the construction of the cartilage component of the composite graft, and MSCs exposed to OS were loaded into a porous calcium phosphate ceramic component for bone formation. Cell-loaded HYAFF(R)-11 sponge and ceramic were joined together with fibrin sealant, Tisseel(R), to form a composite osteochondral graft, which was then implanted into a subcutaneous pocket in syngeneic rats. Specimens were harvested at 3 and 6 weeks after implantation, examined with histology for morphologic features, and stained immunohistochemically for type I, II, and X collagen. The two-component composite graft remained as an integrated unit after in vivo implantation and histologic processing. Fibrocartilage was observed in the sponge, and bone was detected in the ceramic component. Observations with polarized light indicated continuity of collagen fibers between the ceramic and HYAFF(R)-11 components in the 6-week specimens. Type I collagen was identified in the neo-tissue in both sponge and ceramic, and type II collagen in the fibrocartilage, especially the pericellular matrix of cells in the sponge. These data suggest that the construction of a tissue-engineered composite osteochondral graft is possible with MSCs and different biomaterials and bioactive factors that support either chondrogenic or osteogenic differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据