4.8 Article

Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment

期刊

WATER RESEARCH
卷 35, 期 12, 页码 2923-2934

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0043-1354(00)00579-0

关键词

nitrification; temperature; biological activated carbon (BAC) filters; opened and closed superstructure; drinking water; nitrifying biomass; ammonia removal

向作者/读者索取更多资源

The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degreesC) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degreesC, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degreesC), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters. a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degreesC) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据