4.7 Article

β-amyloid(1-42)-induced cholinergic lesions in rat nucleus basalis bidirectionally modulate serotonergic innervation of the basal forebrain and cerebral cortex

期刊

NEUROBIOLOGY OF DISEASE
卷 8, 期 4, 页码 667-678

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/nbdi.2001.0398

关键词

beta-amyloid; anxiety; magnocellular nucleus basalis; serotonin; sprouting

向作者/读者索取更多资源

Ample experimental evidence suggests that beta -amyloid (A beta), when injected into the rat magnocellular nucleus basalis (MBN), impels excitotoxic injury of cholinergic projection neurons. Whereas learning and memory dysfunction is a hallmark of A beta -induced cholinergic deficits, anxiety, or hypoactivity under novel conditions cannot be attributed to the loss of cholinergic MBN neurons. As mood-related behavioral parameters are primarily influenced by the central serotonergic system, in the present study we investigated whether A beta ((1-42)) toxicity in the rat MBN leads to an altered serotonergic innervation pattern in the rat basal forebrain and cerebral cortex 7 days postsurgery. A beta infusion into the MBN elicited significant anxiety in the elevated plus maze. A beta toxicity on cholinergic MBN neurons, expressed as the loss of acetylcholinesterase-positive cortical projections, was accompanied by sprouting of serotonergic projection fibers in the MBN. In contrast, the loss of serotonin-positive fiber projections, decreased concentrations of both serotonin and 5-hydroxyindoleacetic acid, and decline of cortical 5-HT1A receptor binding sites indicated reduced serotonergic activity in the somatosensory cortex. In conclusion, the A beta -induced primary cholinergic deficit in the MBN and subsequent cortical cholinergic denervation bidirectionally modulate serotonergic parameters in the rat basal forebrain and cerebral cortex. We assume that enhanced serotonin immunoreactivity in the damaged MBN indicates intrinsic processes facilitating neuronal recovery and cellular repair mechanisms, while diminished cortical serotonergic activity correlates with the loss of the subcortical cholinergic input, thereby maintaining the balance of neurotransmitter concentrations in the cerebral cortex. (C) 2001 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据