4.7 Article

A genetic algorithm approach to the multiple machine tool selection problem

期刊

JOURNAL OF INTELLIGENT MANUFACTURING
卷 12, 期 4, 页码 331-342

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1011215416734

关键词

flexible machining workstation (FMW); genetic algorithms (GA); machine assignment problem; job scheduling problem; tool sharing; tool switching; tool switching instances

向作者/读者索取更多资源

A number of earlier researches have emphasized the on-the-job scheduling problems that occur with a single flexible machine. Two solutions to the problem have generally been considered; namely minimization of tool switches and minimization of tool switching instances. Methods used to solve the problems have included KTNS heuristic, dual-based relaxation heuristic, and non-LP-based branch-and-bound methods. However, scant literature has considered the case of job scheduling on multiple parallel machines which invokes another problem involving machine assignment. This paper addresses the problem of job scheduling and machine assignment on a flexible machining workstation (FMW) equipped with multiple parallel machines in a tool-sharing environment. Under these circumstances, the authors have attempted to model the problem with the objective of simultaneously minimizing both the number of tool switches and the number of tool switching instances. Furthermore, a set of realistic constraints has been included in the investigation. A novel genetic algorithm (GA) heuristic has been developed to solve the problem, and performance results show that GA is an appropriate solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据