4.8 Article

Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation

期刊

BIOMATERIALS
卷 22, 期 15, 页码 2115-2123

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(00)00400-2

关键词

PEG/PEG-SO3; immobilization; ozone treatment; wettability; platelet adhesion

向作者/读者索取更多资源

A novel surface modification method has been developed to improve biocompatibility of polymeric biomaterials. This approach involves ozonation and then followed by graft polymerization with acrylates containing PEG, sulfonated PEG or by coupling of PEG derivatives. All the reactions were confirmed by ATR FT-IR and ESCA. The degree of ozonation measured by the iodide method was dependent on the ozone permeability of the polymers used. Surface hydrophilicity was investigated by measuring the contact angles. Ozonation itself yielded a slight increase in hydrophilicity and a decrease in platelet adhesion, but PEG immobilization showed a significant effect on surface hydrophilicity and platelet adhesion to confirm well-known PEG's passivity which minimize the adhesion of blood components on polymer surfaces. Both graft polymerization and coupling were effective for PU. In contrast, only grafting gave enough yields for PMMA and silicone. Platelet adhesion results demonstrated that all PEG modified surfaces adsorbed lower platelet adhesion than untreated or ozonated ones. Polymers coupled with sulfonated PEG exhibited the lowest platelet adhesion when compared with control and PEG coupled ones by virtue of the synergistic effect of non-adhesive PEG and negatively charged SO3 groups. This PEG or sulfonated PEG immobilization technology using ozonation is relatively simple for introducing uniform surface modification and therefore very useful for practical application of blood contacting medical devices. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据