4.5 Article

Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation

期刊

JOURNAL OF NEUROCHEMISTRY
卷 78, 期 4, 页码 746-755

出版社

WILEY-BLACKWELL
DOI: 10.1046/j.1471-4159.2001.00457.x

关键词

aconitase; excitotoxicity; oxygen-glucose deprivation; metalloporphyrin; mitochondria; superoxide

资金

  1. NINDS NIH HHS [NS39587] Funding Source: Medline

向作者/读者索取更多资源

Using the inactivation of mitochondrial and cytosolic aconitases as markers of compartment-specific superoxide (O-2(-)) production, we show that oxygen-glucose deprivation (OGD) or excitotoxin exposure produce a time-dependent inactivation of mitochondrial, but not cytosolic, aconitase in cortical cultures. To determine if mitochondrial O-2(-) production was an important determinant in neuronal death resulting from OGD, metalloporphyrins with varying superoxide dismutase (SOD) activity were tested for their ability to protect against mitochondrial aconitase inactivation and cell death. OGD-induced mitochondrial aconitase inactivation and cell death was inhibited by manganese tetrakis (4-benzoic acid) porphyrin (MnTBAP), manganese tetrakis (N-ethylpyridinium-2yl) porphyrin (MnTE-2-PyP) and NMDA receptor antagonists. By contrast, NMDA- or kainate (KA)-induced mitochondrial aconitase inactivation and cell death was inhibited by MnTBAP, but not MnTE-2-PyP. Moreover, both MnTBAP and MnTE-2-PyP penetrated mitochondrial fractions of cortical cells. These data suggest that mitochondrial aconitase inactivation closely correlates with subsequent neuronal death following excitotoxicity produced by OGD or NMDA/KA exposure. Assessment of biological rather biochemical antioxidant activities better predicted neuroprotection by metalloporphyrins. Moreover, antioxidants that protect oxidant-sensitive mitochondrial targets such as aconitase may be useful as therapies for disease states involving excitotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据