4.4 Article

Ribosomal protein L5 helps anchor peptidyl-tRNA to the P-site in Saccharomyces cerevisiae

期刊

RNA
卷 7, 期 8, 页码 1084-1096

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1017/S1355838201001480

关键词

frameshifting; ribosome; virus

资金

  1. NIGMS NIH HHS [R01 GM58859, R01 GM058859, R01 GM062143, R01 GM62143] Funding Source: Medline

向作者/读者索取更多资源

Our previous demonstration that mutants of 5S rRNA called mof9 can specifically alter efficiencies of programmed ribosomal frameshifting (PRF) suggested a role for this ubiquitous molecule in the maintenance of translational reading frame, though the repetitive nature of the 5S rDNA gene (>100 copies/cell) inhibited more detailed analyses. However, given the known interactions between 5S rRNA and ribosomal protein L5 (previously called L1 or YL3) encoded by an essential, single-copy gene, we monitored the effects of a series of well-defined rpl5 mutants on PRF and virus propagation. Consistent with the mof9 results, we find that the rpl5 mutants promoted increased frameshifting efficiencies in both the -1 and +1 directions, and conferred defects in the ability of cells to propagate two endogenous viruses. Biochemical analyses demonstrated that mutant ribosomes had decreased affinities for peptidyl-tRNA. Pharmacological studies showed that sparsomycin, a peptidyltransferase inhibitor that specifically increases the binding of peptidyl-tRNA with ribosomes, was antagonistic to the frameshifting defects of the most severe mutant, and the extent of sparsomycin resistance correlated with the severity of the frameshifting defects in all of the mutants. These results provide biochemical and physiological evidence that one function of L5 is to anchor peptidyl-tRNA to the P-site. A model is presented describing how decreased affinity of ribosomes for peptidyl-tRNA can affect both -1 and +1 frameshifting, and for the effects of sparsomycin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据