4.7 Article

A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/36.942542

关键词

microwave radiometry; remote sensing; soil moisture; vegetation

向作者/读者索取更多资源

A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz H and V polarized brightness temperature observations from the scanning multichannel microwave radiometer (SMMR) over several test sites in Illinois. Results using only nighttime data are presented at this time due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a nonlinear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness, and that vegetation optical depth for H-polarization is the same as for V-polarization. Surface temperature is derived by a procedure using high frequency V-polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and may be applied to other wavelengths. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据