4.0 Article

Clues to calcineurin function in mammalian fast-twitch muscle

期刊

出版社

SPRINGER
DOI: 10.1023/A:1015010914328

关键词

-

资金

  1. Telethon [848] Funding Source: Medline

向作者/读者索取更多资源

It is believed that brief, high amplitude Ca2+ transients, as found in fast-twitch muscles, are not sufficient to activate the calcineurin (Cn)-dependent signaling pathway involved in regulation of slow myosin and slow sarcoplasmic reticulum Ca2+-ATPase genes (Olson and Williams, Cell 101: 689-692, 2000). The results reported here try to fill the gap between this molecular knowledge, and the still fragmentary pieces of information on a possible different role of calcineurin in the same type of muscles. In the present work calcineurin was determined immunocytochemically by labeling fast- and slow-twitch fibers of representative rabbit muscles with anti-CnB antibodies, and was assessed by western blotting of isolated subcellular fractions. Calcineurin was found to be largely soluble and to be constitutively overexpressed in fast muscle as CnAalpha and CnAbeta isoforms, the latter appearing to be predominant. Particulate calcineurin was not only associated with myofibrils but also with membranes of various origins. Fluorescence microscopy showed that calcineurin was distributed in the same pattern with respect to sarcomeres in both types of fibers, and formed punctate dots spanning the I-Z-I region, rather than being exclusively located at the Z-line, a disposition described for cardiomyocytes (Frey et al., Proc Natl Acad Sci USA 97: 14,632-14,637, 2000). From knowledge that, in mammalian skeletal muscle fibers, junctional triads are located at the A-I band boundary, we explored the distribution of calcineurin between triadic components, after having verified that it was present in very low amounts in dystrophin-enriched sarcolemmal membranes. Our results demonstrate that a small but significant proportion of calcineurin coenriched with transverse tubules (TT), and copurified with the DHPR and with DHPR-associated PKA-AKAP15/18, thus suggesting that it is assembled as a multiprotein complex in the junctional membrane domain of TT. The membrane specificity of this association is further corroborated by the negative evidence for the presence of calcineurin in SR terminal cisternae. Calcineurin was separated from the DHPR and isolated as a AKAP15/18 subcomplex, including beta2 adrenergic receptor, in addition to PKA and calcineurin, following equilibrium centrifugation of detergent extracts on a linear sucrose gradient. We show that the alpha1 subunit skeletal isoform of the DHPR, is a substrate for calcineurin dephosphorylation, after previous phosphorylation by endogenous PKA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据