4.5 Article

Influence of cationic lipids on the stability and membrane properties of paclitaxel-containing liposomes

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 90, 期 8, 页码 1091-1105

出版社

ELSEVIER SCIENCE INC
DOI: 10.1002/jps.1063

关键词

paclitaxel; membrane domains; drug delivery; cationic liposomes

资金

  1. NCI NIH HHS [R01 CA072042-03, CA55251] Funding Source: Medline
  2. NCRR NIH HHS [S10 RR027232-01, S10 RR015877-01A1, S10 RR027232] Funding Source: Medline

向作者/读者索取更多资源

Paclitaxel (taxol) is a poorly soluble anticancer agent that is in widespread clinical use. Liposomes provide a less toxic vehicle for solubilizing the drug and increasing the therapeutic index of paclitaxel in model tumor systems. The role of liposome membrane composition in the stability of paclitaxel-containing formulations is understood partially for neutral and anionic liposomes, but poorly for other compositions. We investigated the effect of dialkyl cationic lipids on the stability and physical properties of paclitaxel-containing liposomes, using circular dichroism (CD), fluorescence spectroscopy, and differential interference contrast microscopy (DIC). DOTAP (1,2-dioleoyl-3-trimethylammonium propane), a cationic lipid used frequently for gene delivery, was combined at various ratios with dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or distearoylphosphatidylcholine (DSPC). In the absence of DOTAP, the stability of liposomes containing greater than or equal to3 mol% paclitaxel was observed to follow the following rank order: DPPC > DSPC > DMPC, Increasing concentrations of DOTAP increased the physical stability of all compositions, and maximal stabilization was achieved at 30-50 mol% DOTAP, depending on the paclitaxel concentration and the acyl chain length of the phosphatidylcholine. The relationship between stability and mole fraction of DOTAP was complex for some compositions. DOTAP exerted a major fluidizing effect on DMPC, DPPC, and DSPC membranes, and the addition of paclitaxel at 3-8 mol% did not increase fluidity further. Studies of membrane phase domain behavior using the probe Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) indicated that both paclitaxel and DOTAP were miscible with the phosphatidylcholine phase. The physical events leading to destabilization of formulations are hypothesized to arise from concentration-dependent paclitaxel self-association rather than immiscibility of the membrane lipids. Given the increased incorporation and stability of paclitaxel in DOTAP-containing membranes and the potential for enhanced interaction with cells, cationic liposomes may provide a therapeutic advantage over previously described liposome formulations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据