3.8 Article

Folding of malate dehydrogenase inside the GroEL-GroES cavity

期刊

NATURE STRUCTURAL BIOLOGY
卷 8, 期 8, 页码 721-728

出版社

NATURE AMERICA INC
DOI: 10.1038/90443

关键词

-

向作者/读者索取更多资源

The chaperonin GroEL binds nonnative substrate protein in the hydrophobic central cavity of an open ring. ATP and GroES binding to the same ring converts this cavity into an encapsulated, hydrophilic chamber that mediates productive folding. A 'rack' mechanism of initial protein unfolding proposes that, upon GroES and ATP binding, the polypeptide is stretched between the binding sites on the twisting apical domains of GroEL before complete release into the chamber. Here, the structure of malate dehydrogenase (MDH) subunit during folding is monitored by deuterium exchange, peptic fragment production and mass spectrometry. When bound to GroEL, MDH exhibits a core of partially protected secondary structure that is only modestly deprotected upon ATP and GroES binding. Moreover, deprotection is broadly distributed throughout MDH, suggesting that it results from breaking hydrogen bonds between MDH and the cavity wall or global destabilization, as opposed to forced mechanical unfolding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据