4.2 Article

Identification and characterization of a cell division-regulating kinase AKB1 (associated kinase of Trypanosoma brucei 14-3-3) through proteomics study of the Tb14-3-3 binding proteins

期刊

JOURNAL OF BIOCHEMISTRY
卷 158, 期 1, 页码 49-60

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jb/mvv018

关键词

14-3-3; Kinase; Proteomics; Trypanosoma brucei

资金

  1. NEKKEN, Institute of Tropical Medicine, Nagasaki University [2013-A-15, 2014-A-16]
  2. [23590500]

向作者/读者索取更多资源

We used a proteomics approach to identify the binding partners of Trypanosoma brucei 14-3-3 (Tb14-3-3) which led to the identification of a novel kinase, AKB1. The binding between these two proteins was mediated by an amphipathic groove structure in Tb14-3-3 and 1-438 amino acid sequence of AKB1. Recombinant AKB1 but not its ATP-binding-deficient mutant (DFG to NFG) possessed an auto-phosphorylation activity as well as a kinase activity towards a peptide substrate in vitro. However, the autophosphorylation was not required for the binding of AKB1 to Tb14-3-3. Interestingly, the kinase activity of AKB1 was inhibited by calcium, and the kinase was found to utilize GTP, and dATP in addition to ATP as phospho-donors. AKB1 formed homodimers through a leucine-zipper structure. Either knockdown of AKB1 or overexpression of AKB1, but not kinase-dead AKB1 mutant, deregulated cytokinesis and cell division, suggesting that kinase activity of AKB1 is crucial for its function. Furthermore, we showed that AKB1 exists in a detergent insoluble fraction. Laser confocal microscopy revealed that the majority of AKB1 is co-localized with alpha-tubulin. Taken together, these findings suggest that AKB1 might regulate cytokinesis and cell division by phosphorylating cytoskeleton-associated proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据