4.8 Article

Differential effects of p19Arf and p16Ink4a loss on senescence of murine bone marrow-derived preB cells and macrophages

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.171217498

关键词

cell cycle checkpoints; cyclin-dependent kinase inhibitors

资金

  1. NCI NIH HHS [P30 CA021765, CA56819, CA21765, CA71907, P01 CA071907] Funding Source: Medline

向作者/读者索取更多资源

Establishment of cell lines from primary mouse embryo fibroblasts depends on loss of either the Arf tumor suppressor or its downstream target, the p53 transcription factor. Mouse p19(Arf) is encoded by the Ink4a-Arf locus, which also specifies a second tumor suppressor protein, the cyclin D-dependent kinase inhibitor p16(Ink4a). We surveyed bone marrow-derived cells from wild-type, Ink4a-Arf-null, or Arf-null mice for their ability to bypass senescence during continuous passage in culture. Unlike preB cells from wild-type mice, those from mice lacking Arf alone could be propagated indefinitely when placed onto stromal feeder layers engineered to produce IL-7. The preB cell lines remained diploid and IL-7-dependent and continued to express elevated levels of p16(Ink4a). By contrast, Arf-null bone marrow-derived macrophages that depend on colony-stimulating factor-1 for proliferation and survival in culture initially grew at a slow rate but gave rise to rapidly and continuously growing, but still growth factor-dependent, variants that ceased to express p16(Ink4a). Wild-type bone marrow-derived macrophages initially expressed both p16I(nk4a) and p19(Arf) but exhibited an extended life span when p16(Ink4a) expression was extinguished. In all cases, gene silencing was accompanied by methylation of the Ink4a promoter. Therefore, whereas Arf loss alone appears to be the major determinant of establishment of murine fibroblast and preB cell lines in culture, p16(Ink4a) provides an effective barrier to immortalization of bone marrow-derived macrophages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据