4.8 Article

Mapping the interactions between flavodoxin and its physiological partners flavodoxin reductase and cobalamin-dependent methionine synthase

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.171168898

关键词

-

资金

  1. NHLBI NIH HHS [HL58955, R01 HL058955] Funding Source: Medline
  2. NIGMS NIH HHS [R37 GM024908, GM 52421, GM24908, T32 GM007863, T32-GM07863-20, R01 GM024908] Funding Source: Medline

向作者/读者索取更多资源

Flavodoxins are electron-transfer proteins that contain the prosthetic group flavin mononucleotide. In Escherichia coli, flavodoxin is reduced by the FAD-containing protein NADPH:ferredoxin (flavodoxin) oxidoreductase; flavodoxins serve as electron donors in the reductive activation of anaerobic ribonucleotide reductase, biotin synthase, pyruvate formate lyase, and cobalamin-dependent methionine synthase. In addition, domains homologous to flavodoxin are components of the multidomain flavoproteins cytochrome P450 reductase, nitric oxide synthase, and methionine synthase reductase. Although three-dimensional structures are known for many of these proteins and domains, very little is known about the structural aspects of their interactions. We address this issue by using NMR chemical shift mapping to identify the surfaces on flavodoxin that bind flavodoxin reductase and methionine synthase. We find that these physiological partners bind to unique overlapping sites on flavodoxin, precluding the formation of ternary complexes. We infer that the flavodoxin-like domains of the cytochrome P450 reductase family form mutually exclusive complexes with their electron-donating and -accepting partners, complexes that require conformational changes for interconversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据