4.7 Article

The role of dimer formation in the self-assemblies of DNA base molecules on Cu(111) surfaces: A scanning tunneling microscope study

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 115, 期 7, 页码 3419-3423

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1384551

关键词

-

向作者/读者索取更多资源

For the purpose of understanding the self-assembly formation mechanism of DNA base molecules, guanine, adenine, cytosine, and thymine molecules were deposited on Cu(111) surfaces, and were observed using a low-temperature (approximate to 80 K) scanning tunneling microscope (STM). Single-molecular-scale STM images revealed that guanine, adenine, and cytosine molecules can form ordered one- and/or two-dimensional unique structures, but thymine molecules, however, randomly aggregate into small clusters. Semiempirical molecular orbital (MO) calculation indicates that there exists predominantly stable dimer structures for the former three molecules, while such phenomena cannot be observed among the possible thymine dimer and even trimer structures. Based on experimental and theoretical results, we have concluded that specific hydrogen-bonded nucleus formation is a decisive process in the two-dimensional self-assembly formation of DNA base molecules on Cu(111) surfaces. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据