4.5 Article

Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase

期刊

BIOCHEMICAL JOURNAL
卷 358, 期 -, 页码 209-216

出版社

PORTLAND PRESS LTD
DOI: 10.1042/0264-6021:3580209

关键词

caveolin; cholesterol; lactosylceramide; lipid rafts; sphingomyelin

向作者/读者索取更多资源

The insolubility of glycosylphosphatidylinositol (GPI)-anchored proteins in certain detergents appears to be an intrinsic property of their association with sphingolipids and cholesterol in lipid rafts. We show that the GPI-anchored protein membrane dipeptidase is localized in detergent-insoluble lipid rafts isolated from porcine kidney microvillar membranes, and that these rafts, which lack caveolin, are enriched not only in sphingomyelin and cholesterol, but also in the glycosphingolipid lactosylceramide (LacCer). Dipeptidase purified from porcine kidney was reconstituted into artificial liposomes in order to investigate the relationship between glycosphingolipids and GPI-anchored protein detergent-insolubility. Dipeptidase was insoluble in liposomes containing extremely low concentrations of LacCer. In contrast, identical concentrations of glucosylceramide or galactosylceramide failed to promote significant detergent-insolubility. Cholesterol was shown to enhance the detergent-in soluble effect of LacCer. GC-MS analysis revealed dramatic differences between the fatty acyl compositions of LacCer and those of the other glycosphingolipids. However, despite these differences, we show that the unusually marked effect of LacCer to promote the detergent-insolubility of dipeptidase cannot be singularly attributed to the fatty acyl composition of this glycosphingolipid molecule. Instead, we suggest that the ability of LacCer to confer detergent-insolubility on this GPI-anchored protein is dependent on the structure of the lipid molecule in its entirety, and that this glycosphingolipid may have an important role to play in the stabilization of lipid rafts, particularly the caveolin-free glycosphingolipid signalling domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据