4.7 Article

Self-consistent hybrid approach for complex systems: Application to the spin-boson model with Debye spectral density

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 115, 期 7, 页码 2991-3005

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1385562

关键词

-

向作者/读者索取更多资源

The self-consistent hybrid approach [H. Wang, M. Thoss, and W. H. Miller, J. Chem. Phys. 115, 2979 (2001), preceding paper] is applied to the spin-boson problem with Debye spectral density as a model for electron-transfer reactions in a solvent exhibiting Debye dielectric relaxation. The population dynamics of the donor and acceptor states in this system is studied for a broad range of parameters, including the adiabatic (slow bath), nonadiabatic (fast bath), as well as the intermediate regime. Based on illustrative examples we discuss the transition from damped coherent dynamics to purely incoherent decay. Using the numerically exact results of the self-consistent hybrid approach as a benchmark, several approximate theories that have been widely used to describe the dynamics in the spin-boson model are tested: the noninteracting blip approximation, the Bloch-Redfield theory, the Smoluchowski-equation treatment of the reaction coordinate (Zusman equations), and the classical path approach (Ehrenfest model). The parameter range where the different methods are applicable are discussed in some detail. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据