4.4 Article

Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 1. Isolated chloroplasts

期刊

BIOCHEMISTRY
卷 40, 期 33, 页码 9896-9901

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi010370f

关键词

-

向作者/读者索取更多资源

Nonphotochemical quenching of chlorophyll fluorescence in plants is indicative of a process that dissipates excess excitation energy from the light-harvesting antenna of photosystem II. The major fraction of quenching is obligatorily dependent upon the thylakoid Delta pH and is regulated by the deepoxidation state of the xanthophyll cycle carotenoids associated with the light-harvesting complexes. Basic principles of enzyme kinetics have been used to investigate this process in isolated chloroplasts. The extent of quenching was titrated against the estimated thylakoid lumen pH, and a sigmoidal relationship was obtained with a Hill coefficient of 4.5 and a pK of 4.7. Upon de-epoxidation, these parameters changed to 1.6 and 5.7, respectively. Antimycin A suppressed quenching, increasing the Hill coefficient and reducing the pK. The rate of induction of quenching fitted second-order kinetics with respect to illumination time, and the rate constant was dependent upon the Delta pH, the de-epoxidation state, the presence of antimycin, and also the presence of dibucaine, a quenching enhancer. All these data are consistent with the notion that quenching is caused by a conformational transition in a chloroplast thylakoid protein; this transition shows cooperativity with respect to proton binding, and is controlled by de-epoxidation state and various exogenous reagents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据