4.6 Article

The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 34, 页码 31945-31952

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M102799200

关键词

-

向作者/读者索取更多资源

Homophilic interactions of death effector domains (DEDs) are crucial for the signaling pathways of death receptor-mediated apoptosis. The machinery that regulates proper oligomerization and autoactivation of procaspase-8 and/or procaspase-10 during T lymphocyte activation determines whether the cells will undergo caspase-mediated apoptosis or proliferation. We screened a yeast two-hybrid library by using the DEDs contained in the prodomains of procaspase-8 and procaspase-10 and isolated a DED-associated factor (DEDAF) that interacts with several DED-containing proteins but does not itself contain a DED. DEDAF is highly conserved between human and mouse (98% amino acid identity) and is homologous to a nuclear regulatory protein YAF-2. DEDAF is expressed at the highest levels in lymphoid tissues and placenta. DEDAF interacts with FADD, procaspase-8, and procaspase-10 in the cytosol as well as with the DED-containing DNA-binding protein (DEDD) in the nucleus. At the cell membrane, DEDAF augmented the formation of CD95-FADD-caspase-8 complexes and enhanced death receptor- as well as DED-mediated apoptosis. In the nucleus, DEDAF caused the DEDD protein to relocalize from subnuclear structures to a diffuse distribution in the nucleoplasm. Our data therefore suggest that DEDAF may be involved in the regulation of both cytoplasmic and nuclear events of apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据