4.7 Article

Granular flow in partially filled slowly rotating drums

期刊

JOURNAL OF FLUID MECHANICS
卷 441, 期 -, 页码 1-29

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112001004736

关键词

-

向作者/读者索取更多资源

In many industrial processes granular materials are mixed together in partially filled slowly rotating drums. In this paper a general theoretical framework is developed for the quasi-two-dimensional motion of granular material in a rotating drum. The key assumption is that the body can be divided into a fluid-like and a solid-like region, that are separated by a non-material singular surface at which discontinuities occur. Experiments show that close to the free surface there is a thin rapidly moving fluidlike avalanche that flows downslope, and beneath it there is a large region of slowly rotating solid-like material. The solid region provides a net transport of material upslope and there is strong mass transfer between the two regions. In the theory the avalanche is treated as a shallow incompressible Mohr-Coulomb or inviscid material sliding on a moving bed at which there is erosion and deposition. The solid is treated as a rigid rotating body, and the two regions are coupled together using a mass jump condition. The theory has the potential to model time-dependent intermittent flow with shock waves, as well as steady-state continuous flow. An exact solution for the case of steady continuous flow is presented. This demonstrates that when the base of the avalanche lies above the axis of revolution a solid core develops in the centre of the drum. Experiments are presented to show how a mono-disperse granular material mixes in the drum. and the results are compared with the predictions using the exact solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据